研究成果
期刊论文|Perturbation-Based Sensitivity Analysis of Slow Coherency with Variable Power System Inertia
发布时间:2022年05月02日 21:47    作者:    点击:[]

Perturbation-Based Sensitivity Analysis of Slow Coherency with Variable Power System Inertia


作者:Xiaohui Wang; Lei Ding; Zhenbin Ma; Rasoul Azizipanah-Abarghooee; Vladimir Terzija

摘要:The identification of generator coherency is crucial to design intentional controlled power system islanding. Due to high penetration of nonsynchronous generation, power system inertia changes both temporally and spatially. Thus, the dynamics in system oscillations and associated slow coherency of generators are directly affected by this. Therefore, their sensitivity deserves investigation. In this paper, the slow coherency with variable inertia is systematically discussed by incremental analysis. Specifically, the approach to study the impacts of variable inertia, based on the matrix perturbation theory, is deployed to provide the explicit eigen-solution sensitivity of slow coherency. To investigate the dependency of coherency grouping on inertia, the changing trends of eigenvector and possible alteration of coherency grouping are estimated. The unusual and abrupt alteration of slow coherency is observed in special scenarios near to modal resonance, i.e. close eigenvalue. The analysis in such scenarios was hardly found in the previous work of coherency sensitivity. Since close eigenvalue can make the traditional matrix perturbation inapplicable, the feasible perturbation in such special scenarios is proposed in this paper. The proposed approach has been thoroughly tested using the classic IEEE 118-bus system. The quantitative results are compared with those obtained analytically.

发表于:IEEE Transactions on Power Systems ( Volume: 36, Issue: 2, March 2021)


上一条:期刊论文|Improving frequency regulation of wind-integrated multi-area systems using LFA-fuzzy PID control 下一条:期刊论文|A Hierarchical Inertial Control Scheme for Multiple Wind Farms with BESSs Based on ADMM8.A Hierarchical Inertial Control Scheme for Multiple Wind Farms with BESSs Based on ADMM

关闭

Copyright © 2021 All rights reserved. 版权所有:beat365(中国)·正版唯一网址-下载App Store科研团队 电话:0531-88392369 传真:0531-88392369 BEAT365唯一官网千佛山校区 济南市经十路17923号 邮编 250061 BEAT365唯一官网兴隆山校区 济南市二环东路12550号 邮编 250002